Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available November 26, 2025
-
Abstract In many electrochemical processes, the transport of charged species is governed by the Nernst–Planck equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented to model the Nernst–Planck equation in systems with electrodeposition. Electrodeposition occurs when ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be challenging for numerical methods to resolve. SPH is a particularly effective numerical method for systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH implementation of the Nernst–Planck equations with electrodeposition and verifies the model with an analytical solution and a numerical integrator. A convergence study of migration and precipitation is presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to experimental results.more » « less
An official website of the United States government

Full Text Available